Tag: dataanalytics

Implementation using Shiny

Well we have understood the business problem and approach to solve it so now lets implement in a GUI way with the help of shiny.

Shiny is a great platform in R to make neat dashboards and with the introduction of shiny dashboard things are even neater.

While coming to the modelling end due to the constraint of speed I have used only a simple linear regression and am plotting output of linear regression, but if we were to make this a business application we could implement all the models using the framework of this code.

If a real user was to use it he may have to wait more than hour to see his result but the value and simplicity it derives for a user is tremendous.

You can view the shiny app here , and you can download the data to run this app from here

I have uploaded the code on git which you can view here



Data – Cash Forecasting

Now the data we are talking about is usually highly confidential and one of the major reasons why we will be working with dummy data.

The data we have is that of a single ATM, for various time periods.

Our fields are Holiday (Binary) where 1 indicates an holiday and 0 indicates a normal working day.

Up time defines how long was the ATM up. At times ATM’s could not be functional because of power outage, network connectivity or physical issues.

Peak period (Binary) where 1 indicates peak period and 0 indicates non peak period.

Dispense cash is dispensed cash against a particular day.

This slideshow requires JavaScript.

Now in general for a normal ATM the weekly trend would be a spike in dispense on the start of weeks mostly Monday and a drop during end of the week ie Saturdays and Sundays.

For a monthly trend the spike would be at the beginning and end of the month and a drop somewhere in between. And this seems logical to, think of salaried people as an example, they get their salaries at the end of the month and probably use it to plan their month ahead, or business men would like to pay their dues or salaries to their employees at the end of the month and therefore withdraw cash.

Above you can see a few basic insights regarding cash dispense.

You can download the dummy data set that I have created from here

Cash Forecasting – Understanding difficulty associated with

Every ATM that is placed anywhere would have different dispensation trends then the other. An ATM in a rural area would have a different and smaller dispensation trend as compared to a busy suburban area. This means a different model for every ATM. WAIT WHAT?? So much over head, no way anyways doing that right. Well yes no ones going to do that.

Solution to this problem is classifying ATM’s based on their locality, Imagine creating various bands, where Band1 is a metropolitan area where users dispense cash frequently from and band5 being the lowest where cash dispense is the lowest.

Now that solves a very minor problem, but still if we see cash dispense trends they would waiver in spite of being in the same band. HMM.. problem still not solved. Now we categorise ATM’s based on their age and on average how much they dispense.

So for our case study we will only be considering ATM’s that have an age greater than 6 months and on average dispense between 0 – 100,000 $.

Cash Forecasting – Overview

How do ATM’s in general work is a great question to ask? Well banks at times prefer not to manage their ATM’s as it involves a lot of overhead such as transportation of cash, maintenance of ATM machines, rent and most importantly security.

In order to avoid this over head a lot of banks outsource this task. The companies who overtake this responsibility , make their revenue based on every transaction made. Say for every non cash transaction from the ATM managed by them they get x$ and for every cash transaction they get y$  where y>x .

So why do we need to predict cash ?? well these companies rent a place, put their ATM’s at that place keep a service engineer to maintain that machine and pump enough security, but where they need to be careful is interest cost. What interest cost? lets say for today’s date I decided to keep 100$ in my ATM, I would borrow this money from a bank, to whom I would pay interest every day for the cash that is not withdrawn by the customer’s.

The obvious solution for this is to load ATM’s with the smallest amount of money possible, however this leads to two problems, First is loss of revenue from a potential customer, and second one is brand loss, and brand loss is very bad.

That means we do not want to load to much money to avoid paying interest cost on idle money, and neither do we want to put to less in order to avoid loss of revenue and brand loss. In order to find this perfect balance we need to create a forecasting model on how much money to load in the ATM’s, in order to make the business profitable.

One underlying constraint is transportation. We cannot transport and load money in ATM’s on a daily basis to avoid transportation costs, that is why transportation will happen only once in two to three days.

R Shiny Apps for Time Series

Like the name suggests shinyy**** .

Shiny is a new package from RStudio that makes it incredibly easy to build interactive web applications with R. For an introduction and live examples, visit the Shiny homepage.

Why shiny ?  Well for starters its free and simple to use and deploy. If you are planning to use shiny commercially , you will have to pay for hosting your apps, but for the rest its free and you can easily deploy your shiny apps online on https://www.shinyapps.io

So why is shiny useful to us, It can be used to make an interactive dashboard design or to allow a person to interact with R from the GUI, no coding for the end user involved. They are also highly dynamic and can be customised to tweak settings as the end user likes.

My problem, For several time series data sets I faced the problem of repetitively checking a few common things like if the data is stationary or not? , how does the data look like?, Does it require transformation and most importantly from a lazy mans perspective, will auto.arima do the trick 😛

I decided to automate this manual task via SHINY and demonstrate a small example.So what does my shiny app do?

  1. It accepts single column input from any text file that you feed in
  2. It will ask user if there is a header
  3. The start year , month and frequency of the data
  4. Using this information it will plot a PACF and ACF graph
  5. It will also execute auto.arima and plot the normal time series data, to get an understanding.

This is a small example and hence it is simple, however we could make much complicated things. However for any person performing time series this app just saved his precious time of doing non trivial work.

So to run a shiny app , we require to code two files, one for the UI and one for the back-end processing, ie ui.R and server.R

Both these files


shiny offers an extensive tutorial on -> https://shiny.rstudio.com/

You can view my app on -> https://mohammedtopiwalla.shinyapps.io/arima_shiny/

My code is relatively simple to , you can view that on github at ->  https://github.com/mmd52/Arima_Shiny

to run the app you will need a text file with time series data, you can download a sample from -> https://github.com/mmd52/Arima_Shiny/blob/master/data.txt


Running Various Models on Pima Indian Diabetesdata set

EDA was done various inferences found , now we will run various models and verify whether predictions match with the inferences.

As I have mentioned in the previous post , my focus is on the code and inference , which you can find in the python notebooks or R files.

Model Accuracy Precision Recall Kappa AUC
Decion Tree 73.48 75.33 82.48 0.4368 0.727
Naïve Bayes 75.22 82 80.39 0.4489 0.723
KNN 73.91 86.67 76.47 0.3894 0.683
Logistic Regression 76.09 82.67 81.05 0.4683 0.732
SVM Simple 73.91 86.67 76.47 0.3894 0.683
SVM 10 Folds 73.04 82.67 77.5 0.388 0.6883
SVM Linear 10 Folds 78.26 88.67 80.12 0.4974 0.7371
Random Forest 76.52 84 80.77 0.4733 0.733
XGBOOST 77.83 91.61 77.06 0.4981 0.843
Model Accuracy Precision Recall Kappa AUC
Decion Tree 72.73 73 73 0.388 0.7
Naïve Bayes 80.51 80 81 0.5689 0.78
KNN 70.99 70 71 0.337 0.66
Logistic Regression 74.45 74 74 0.3956 0.68
SVM Simple 73.16 73 73 0.4007 0.69
Random Forest 76.62 77 77 0.48 0.73
XGBOOST 79.22 79 79 0.526 0.76

As we can see from the above tables XGBOOST was the clear winner for both the languages.

The Code for Python you can find at -> https://github.com/mmd52/Pima_Python

The code for R you can find at -> https://github.com/mmd52/Pima_R

Exploratory Data Analysis

We have a classification problem. Our data set has in total 8 independent variables, out of which one is a factor and 7 our continuous. This means we should have at-least 8 plots.

The target variable Outcome should be plotted against each independent variable if we want to derive any inferences and leave no stones unturned for it.

So if we need to plot 2 factor variables, we should preferably use a stacked bar chart or mosaic plot.

For one numeric and other factor bar plots seem like a good option.

And for two numeric variables we have out faithful scatter plot to the rescue.

In this blog I post I will not be stressing much on words but more on code and inferences made which is well explained and documented in my code.

I strongly suggest you view the code below, which has inferences and a well documented structure.

You can download the data from

DATA-> https://github.com/mmd52/Pima_R (A file named as diabetes.csv is the one)

R Code ->  https://github.com/mmd52/Pima_R/blob/master/EDA.R (A fair warning to execute the EDA code in R you will first need to execute the https://github.com/mmd52/Pima_R/blob/master/Libraries.R and https://github.com/mmd52/Pima_R/blob/master/Data.R)

Python Code-> https://github.com/mmd52/Pima_Python/blob/master/EDA.ipynb (Its a Jupyter Notebook)

Decision Tree and Interpretation on Telecom Data

We saw that logistic Regression was a bad model for our telecom churn analysis, that leaves us with Decision tree.

Again we have two data sets the original data and the over sampled data. We run decision tree model on both of them and compare our results.

So running decision tree on the normal data set yielded better results as compared to running on the over sampled data set

Accuracy Kappa Precision Recall Auc
Data 0.9482 0.7513 0.68421 0.90698 0.837
Over Sampled Data 0.8894 0.5274 0.5965 0.5862 0.7656

Unfortunately the decision tree plot was too big for me to put it in this post.

As decision tree is giving the highest level of accuracy , we will select it as the clear winner for our telecom churn analysis problem.

Another major advantage of decision tree is that it could be explained graphically very easily to the end business user on why a particular choice is being made.

You can find the code for decision tree here->


This was a dummy database and may not have yielded the best results , but is a perfect exercise for practice.

Determining Feature Importance For Telecom Data

We have a complete data set  -> Check

Feature engineering done -> Check

How many variables do we have?    20 variables

How many should we ideally use ?   Not more that 10 ideally

How to determine which variables to include and which not to ?   Its simple do Boruta!!

Whats Boruta?

Boruta is a feature selection algorithm. Precisely, it works as a wrapper algorithm around Random Forest. You can read about it here ->  https://www.analyticsvidhya.com/blog/2016/03/select-important-variables-boruta-package/   Analytics vidhya has given a pretty good explanation about it here.

Now keep one important thing in mind we have two train sets 1)Normal train set  2)Smote Train set.

So upon running boruta on the normal train set, boruta confirmed the variables International_Plan,Voice_Mail_Plan ,No_Vmail_Messages,Total_Day_minutes,
Total_Night_Charge , Total_Intl_Minutes,Total_Intl_Calls,Total_Intl_Charge,
No_CS_Calls as important.

And upon running Boruta on Smote data set, Boruta confirmed all the variables as important, you can find the boruta code below


Churn Analysis On Telecom Data

One of the major problems that telecom operators face is customer retention. Because of which majority of the Telecom operators want to know which customer is most likely to leave them, so that they could immediately take certain actions like providing a discount or providing a customised plan, so that they could retain the customer.

However accuracy required while building a churn analysis model needs to be very high, imagine if our model has a accuracy of just 75% and the total number of customers who want to leave are just 5% , this leaves a margin of 20% of customers who were wrongly classified as customers who will leave the operator. If an operator has 10000 customers,And 2500 customers are predicted to leave , the operator may have to release lets assume a 1$ credit to all that’s a cost of 2500$, where as credits that required to be released was only for 5% of the customer’s that is a cost of 500$, hence the operator spent 2000$ for no reason. If the operator has high number of customers it would lead to a huge loss.

Coming to the data quotient, there is no freely available telecom data as far as I know available, however the website https://www.sgi.com/tech/mlc/db/ provides data for churn analysis, this data is not real but represents real world scenarios and is good from the perspective of understanding and learning.

The data on the website is classified into train and test has no NA’s means no feature engineering as such to be done before running models on it.

Now comes the question of which models to run on it. Some would say since we need very high accuracy hence we will run xgboost or random forest, however the downside we have here is that we cannot explain to the operator on what basis is XGBOOST or random forest determining why will the customer leave him. Even if we manage to explain its very complicated and will not be accepted.

Because of this we will have to take support on models that can be easily explained to the customer. This leaves us with two models for classification .i.e. customer leaves -> 0 or customer is retained -> 1. So the models are Logistic regression and decision tree.

Why Logistic Regression ?  well because we can explain to the operator why customer is leaving him thanks to the logit equation.

Why Decision Tree? well because there is a neat flow of how our tree makes decision by breaking variables and deciding yes and no based on entropy and impurity.

Further in this post category I will show feature engineering to Running models, to interpretation.

The data available from the website is a bit complex to save to a CSV file so if you need you can download the train and test data from below.

Also explanation of variables is not provided as it is fairly simple.